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Multivariate data analysis of NMR data* 
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Abstract: Multivariate methods based on principal components (PCA and PLS) have been used to reduce NMR spectral 
information, to predict NMR parameters of complicated structures, and to relate shift data sets to dependent descriptors 
of biological significance. Noise reduction and elimination of instrumental artifacts are easily performed on 2D NMR 
data. Configurational classification of triterpenes and shift predictions in disubstituted benzenes can be obtained using 
PCA and PLS analysis. Finally, the shift predictions of tripeptides from descriptors of amino acids open the possibility of 
automatic analysis of multidimensional data of complex structures. 
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Introduction 

The impressive development of NMR spectro- 
scopy during the last decade has positioned 
NMR to be the leading spectroscopic tech- 
nique. Due to high magnetic fields and im- 
proved probe designs, NMR can be classified 
as an analytical technique for many nuclei and 
the introduction of 3D/4D techniques com- 
bined with isotopic labelling (15N, 13C) has 
steadily increased the upper limit for molecular 
complexity that could be studied by NMR [l]. 

This condition coupled to the fact that 
structural and dynamic information is to be 
found in many NMR parameters (chemical 
shifts, coupling constants, relaxation times, 
NOE, etc.) has resulted in a need for models 
that could extract the information content in 
relation to specific questions. Numerous 
“hard” models based on kinetic or thermo- 
dynamic conditions, connectivities, library 
data banks, etc. have been suggested [2]. The 
most recent need for automatic analysis of 2D/ 
3D data of large proteins has clearly pointed 
out the weakness of such “hard” approaches. 

In our opinion “soft” models such as those 
based on principal components (PCA, PLS) 
are to be preferred in handling NMR data. The 
complexity of the spectral responses and the 
fact that NMR is far from robust compared 
with other spectroscopic techniques are both 
strong arguments in favour of soft modelling. 

In practice it is impossible, for instance, to 
obtain a 2D NOESY spectrum of a reasonably 
large protein without getting spurious peaks in 
the spectrum. 

In this report we will give several examples 
how PCA/PLS methods can be used in NMR 
spectroscopy, from processing of NMR 
spectra, identification or assignment of signals 
to structural classification problems. 

Results and Discussion 

Data processing 
Besides the problem with overlapping peaks, 

NMR spectroscopy suffers sometimes from 
signal-to-noise limitations. Characteristic noise 
includes random thermal noise and systematic 
noise ridges. The tl noise, usually the most 
troublesome artifact in 2D NMR spectroscopy, 
appears as bands of spurious peaks running 
parallel to the tl spectral dimension through 
large signals in the data such as peaks from 
methyl groups or solvent lines. Causes of tl 
noise include instrumental instabilities (field/ 
frequency instability in particular), signal 
truncation and numerical errors in fast Fourier 
transform. These noise ridges pose serious 
difficulties for accurate signal assignments be- 
cause these ridges introduce “false” peaks 
while obscuring “true” ones. By the combi- 
nation of experimental methods for solvent 
peak suppression and various data-processing 
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procedures such as symmetrization and noise- 
profile subtraction it is possible to extract 
information that would otherwise be hidden by 
noise bands. However, quite a few of these 
techniques can pose large difficulties in inter- 
preting the data, because some processing 
schemes introduce artifacts. 

features while excluding random noise. PCA 
can also be used to form a mathematical model 
of the spectral noise bands. This noise model is 
later subtracted from the original spectrum, 
leading to substantial suppression of the noise 
(Fig. 1). 

In this study we have chosen a multivariate 
representation of the entire 2D spectra in 
conjunction with principal component analysis. 
PCA is used to approximate the spectrum to a 
degree which retains the systematic spectral 

Shift assignments 
In an early study of r3C NMR substituent 

chemical shifts (KS) of monosubstituted 
benzenes it was found that the majority of 
substituents belonged to one out of four 
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Figure 1 
(A) The aliphatic region of Trp-Phe-Trp-Ala is shown (DQF-COSY, DMSO-d,). Note the strong t, ridge, which is 
originating from the solvent signal at 3.3 ppm. (B) Second principal component, reconstruction of region in (A). (C) 
Original data with noise ridge components subtracted. (D) Symmetrization of original data. (E) Original data plus 
simulated noise, S/N = 5:l. (F) Reconstruction of spectrum in (E) with 10 principal components, S/N = 12:l. 
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groups, alkyls, acceptors, donors or halogens 
[3]. Only a limited number of “unusual” 
substituents were found in between these 
clusters. Hence, by using local models for each 
class of substituents, a significantly improved 
description of SCS was found compared with 
global models such as dual substituent para- 
meter models. This view has been frequently 
criticized, but a positive outcome of our in- 
vestigation is that the many reports published 
later actually test for clustering before using a 
unifying model [4]. Unfortunately, the support 
for a unifying view of SCS has been based on 
data sets where the “well-behaved” objects are 
reduced in number and “odd” substituents in 
between the claimed clusters are more 
frequent. 

To illustrate the strength of partial least- 
squares (PLS) data analysis as a tool to 
quantify analogy reasoning for shift assign- 
ments, the non-additivity of SCS in 1,3- and 
1,6disubstituted benzenes was specifically 
studied [5]. By using the i3C SCS of monosub- 
stituted benzenes, it was shown that the depen- 
dent “non-additivity SCS” matrix could be 
fully described by the monosubstituted SCS 
pattern. This explicitly means that no ad- 
ditional effects are necessary to explain the 
non-additivity in these disubstituted benzenes, 
an important simplification to remember in 
molecular design schemes. 

Two dimensional NMR of large molecular 
systems is an area where there is a special need 
for efficient strategies for peak assignments. 
One approach is to transform the normal 2D 
output into a peak table, where in principle 
each data point in one dimension is an object 
defined by the intensity value along the other 
dimension (variables). Such intensity matrix 
can be treated in a PCA manner and weakly 
coupled spin systems can be identified [6]. To 
illustrate this approach, we show how the 
unambiguous spin topology information in a 
double-quantum-filtered COSY spectra of 
leucine enkephalin (Tyr-Gly-Gly-Phe-Leu) can 
be extracted. By interpreting PCA score plots 
it was possible to successfully separate the 
seven detectable spin systems. These score 
plots show the spin systems as a series of 
mutually orthogonal hyperplanes. In the PCA 
score plots, the spin systems in tyrosine, 
phenylalanine and leucine are separated from 
each other; the two glycine spin systems occur 
together in a single hyperplane. It is important 
to note that, based on topology of this DQF- 

COSY spectrum, it is possible to separate the 
overlapping glycine systems without resorting 
to information from other experiments. 

It must be stressed that the steps to generate 
these results were performed in a totally 
automated way, including the steps of spectral 
processing, peak picking, construction of the 
multivariate matrix representation and PCA. 

There are several problems any automatic or 
semi-automatic approach must surmount in 
order to provide a practical method for 2D 
spectral interpretation of biomolecules. Over- 
lapping peaks, spectral changes due to tem- 
perature or pH variation, missing peaks, etc. 
put strong demands on the used methodology. 
This should be added to the fact that changing 
an amino acid in the vicinity of given amino 
acid in a protein will induce significant shift 
changes. We have approached this problem by 
tabulating a large number of shift data for all 
protons in combinations of three amino acids. 
By considering that there are 23*22*23 three 
unit sequences, or residue combinations, we 
have currently tabulated about 20% of all 
possible combinations. This is already a size- 
able share of the total “search space”. In 
addition to this we have included a large 
number of physical descriptors for each amino 
acid and also for the neighbouring amino acids. 
These descriptors contain various properties 
ranging from molecular size to electronic 
effects for the individual amino acids. 

By using soft modelling methods of the data 
set(s) it was possible to classify each proton 
class, and the technique provides a good tool 
for evaluating the significance of the proposed 
assignments. 

Classification 
A very common situation in NMR is to find 

suitable probes, for instance specific signals, 
whose parameters (shifts, coupling relaxation) 
you hope monitor a certain molecular prop- 
erty, let us say configuration. For a series of 
compounds, the NMR information related to 
your question (configuration) could be hidden 
in effects due to a variable substitution. The 
required information might also to a varying 
degree be distributed to many positions; a 
condition, which hardly could be detected by 
traditional eye-balling. Such a situation is 
prevalent in a series of pentacyclic, pharmaco- 
logically interesting triterpenes [7]. Although 
the main skeleton was substituted differently in 
five positions we were able to (1) identify 
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